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Abstract 

 The relative role of space and place has long been debated in geography. Yet modeling 

efforts applied to coupled human-natural systems seemingly favor models assuming continuous 

spatial relationships. We examine the relative importance of place-based hierarchical versus 

spatial clustering influences in tropical land use/cover change (LUCC). Guatemala was chosen as 

our study site given its high rural population growth and deforestation in recent decades. We test 

predictors of 2009 forest cover and forest cover change from 2001-2009 across Guatemala’s 331 

municipalities and 22 departments using spatial and multi-level statistical models. Our results 

indicate the emergence of several socio-economic predictors of LUCC regardless of model 

choice. Hierarchical model results suggest significant differences exist at the municipal and 

departmental levels but largely maintain the magnitude and direction of single-level model 

coefficient estimates. They are also intervention-relevant since policies tend to be applicable to 

distinct political units rather than to continuous space. Spatial models compliment hierarchical 

approaches by indicating where and to what magnitude significant negative and positive 

clustering associations emerge. Appreciating the comparative advantages and limitations of 

spatial and nested models enhances a holistic approach to geographical analysis of tropical 

LUCC and human-environment interactions. 

  

Key words: land use/cover change (LUCC), human-environment dynamics, deforestation, 

coupled human-natural systems. 

 

 

1. Introduction 

1.1 Modeling space and place in coupled human-natural systems and land change research 



 A “coupled human-natural systems” (CHANS) approach builds on complexity theory, to 

incorporate feedbacks, multiple equilibria, and unstable dynamics in coupled human-

environment dynamics (Liu et al., 2007; Manson, 2003; Turner and Robbins, 2008). Land 

use/cover change (LUCC) is a central research initiative of CHANS research, with important 

implications to both human and natural systems (Turner et al., 2007). A large LUCC literature 

has investigated LUCC drivers (Lambin et al., 2003; Carr, 2004). Recent empirical studies have 

uncovered feedbacks among migration and LUCC (Carr, 2009), population change and LUCC 

(Liu et al., 2001), and between socio-economic development, consumption, and LUCC (Rudel et 

al 2009). All of these prior studies, however, imperfectly capture the influence of space and place 

in modeling land use outcomes. 

Spatial and hierarchical models may usefully complement contemporary human-

environment research tools such as agent-based modeling (ABM). To investigate coupled 

natural-human linkages, researchers have increasingly turned to ABM (An et al., 2002) while 

hierarchical approaches remain scarce (Rindfuss et al., 2008; Verburg et al., 2004). While ABM 

can model cumulative effects of actor-environment interactions, it fails to explicitly integrate 

multiple spatial scales. Modeling spatial behavior at the individual level may fall victim to the 

atomistic fallacy, where the contextual surroundings of individual behaviors are ignored (Alker, 

1969; Diez-Roux, 2002). A hierarchical approach, in contrast, offers the potential to examine 

structure as manifested in space versus agency by explicitly locating the agents of environmental 

change within larger meaningful geographical units and contexts (Chowdhury and Turner, 2006). 

A further strength of multi-level analysis is its ability to overcome inherent bias due to 

autocorrelation by separating out spatial or temporal similarity at various levels of analysis. 

However, a potential drawback of the hierarchical modeling approach is its dependence on a 

priori definitions of discrete spatial units (Fotheringham and Brunsdon, 1999). Lastly, a nested 

model allows us to distinguish one place from another rather than to model space continuously 

(Nelson, 2001). This is appropriate when units of interest are naturally place based such as a 

village or a county. In turn, since policy is made at village, county, state, and national levels – 

not continuously over space – policy implications of hierarchical models can be particularly 

applicable. 

ABM and other CHANS tools may also be usefully accompanied by spatial regression 

approaches. The modifiable areal unit problem (MAUP) and associated ecological fallacy have 

been both a bane and a raison d’être for geographers for many years. MAUP is a potential source 

of variation associated with aggregating data into arbitrarily bound groups resulting in summary 

values and statistical properties of variables that are influenced by the boundaries themselves as 

much as by on-the-ground phenomena (Openshaw, 1984; Fotheringham and Wong, 1991; 

Greenland, 2002). Since entirely objective boundaries are impossible to derive, researchers are 

challenged to justify the most feasible and appropriate areal unit to analyze. At times, this is done 

for them, especially when data are available only for pre-defined units (e.g. county data). As a 

result, modeling of LUCC has been plagued by the natural occurrence of spatial or temporal 

autocorrelation—the fact that areas that occur closer in space or time to one another respond 

more similarly to a stimulus than areas that are further apart (Getis, 2010). Such dynamics 

violate the independence assumptions of many statistical analyses, particularly regression 

analysis (Geary, 1954).  While multi-level models can reveal relationships of nested parameter 

measures, they cannot reveal a parameter’s spatial distribution.  

 Relationships that are liquid over space, in other words exhibit spatial non-stationarity, 

will not be modeled well by global parameter estimates (Fotheringham and Brunsdon 1999), as 



found in ordinary lease-squares (OLS) and hierarchical regression techniques. Measures of 

LUCC are often inherently spatially dependent, and necessitate consideration of how geography 

will influence model parameters (Overmars et al., 2003; Kupfer and Farris, 2007). Furthermore, 

incorporating parameter variability over space will lead to better understanding of the 

connections between geography and LUCC drivers. Geographically Weighted Regression 

(GWR), is a regression method that accounts for spatial non-stationarity by running a local 

regression at each spatial unit while incorporating weighted values of surrounding spatial 

neighbors (Brunsdon et al. 1998). While GWR has been applied in LUCC studies, its use in 

deforestation research, particularly in Latin America, is rare (Witmer, 2005; Pineda Jaimes et al., 

2010). 

 This paper examines space versus place in a comparison of GWR (i.e., space) versus 

multi-level models (i.e., place) applied to tropical land change in Guatemala. The case study 

examines spatial and nested predictors of change in woody cover from 2001-2009 and absolute 

woody cover in 2009 for Guatemala’s 331 municipalities nested within 22 departments. We first 

describe the importance of the study site for the examination of LUCC and the related data sets, 

followed by a discussion of multi-level and spatial analytical methods in coupled human-

environment research. We then describe our data sources and analytical methods before 

reporting results for predicting woody cover in Guatemala using OLS, multi-level, and GWR 

approaches and compare the way these procedures model data and the estimates they generate. 

Following the discussion of similarities and contrasts between nested and spatial approaches, we 

elaborate potential implications for enhanced modeling of tropical LUCC and the significance 

for the theoretical, methodological, and political dimensions of human-environment dynamics. 

 

1.2 Tropical LUCC in Latin America and Guatemala 

 According to Houghton et al. (1991), 28% (370 x 10
6 

ha) of Latin America’s forests were 

replaced by some form of agricultural operation, or fragmented to provide building and fuel 

supplies for nearby settlements between 1850 and 1985. Forest conversion to pasture represents 

44% of this change while conversion to cropland, fragmented land, and fallow each represent 25, 

20 and 10% respectively. The rate at which Latin American forests conversion took place 

remained low and stable prior to 1940, but rapidly accelerated thereafter (Houghton et al., 1991). 

In the 1990s, forest conversion for agriculture and settlement construction continued to alter 

large tracts of forested land. Two sets of authors, Achard et al. (2002) and Mayaux et al. (2005), 

report Latin American deforestation rates of 2.2 and 2.5 x 10
6
 ha per year, respectively, during 

the 1990s. These rates equate to a 0.33 and 0.38% loss of forest cover per year. 

Deforestation trends in Central America conform to those seen throughout Latin 

America. Following human settlement, Central America has suffered an estimated 82% loss of 

total forest cover and an 89% loss in primary forest cover (Myers, 1991). In the 1990s, Achard et 

al. (2002) and Barbier (1997) reported continued deforestation throughout Central America with 

rates ranging from 0.8 to 1.5%. This is down from the 1.8% deforestation rate (3,000km
2
/year) 

for the region reported by Myers (1991) for the late 1980s.  

 While much of Central American forests continue to be exploited for their timber, 

fuelwood, and agricultural resources, some are experiencing small but significant re-growth. For 

example, the mountainous region of La Champa, Honduras experienced a shift from slash and 

burn agriculture to more sedentary and intensive farming practices from 1987 to 1996, resulting 

in a net increase in reforestation as marginal lands were abandoned (Southworth and Tucker, 

2001; Monroe et al., 2004). Additional examples can be found in Panama (Wright and 



Samaniego (2008) reported a 0.36%/year increase in total forest cover in Panama, but a 1.3/year 

loss of primary forests for the entire nation between 1992 and 2000) and Costa Rica (Kleinn et 

al. (2002) described a declining rate of deforestation in Costa Rica between the 1940s and the 

1980s that eventually flattens out and starts to curve upward in the early 1990s). 

Within Guatemala, rapid population growth and shifting agricultural practices have 

inscribed visible impacts on its biologically diverse landscape. According to Loening and 

Markussen (2003), Guatemala’s total forest cover shrunk from 65% to 26% during the second 

half of the twentieth century (1950-2000). Deforestation rates were especially high in the 1990s 

(1.7% per annum) (Carr and Bilsborrow, 2001, Brooks et al., 2002), where most deforestation 

can be directly attributed to rural-frontier migration by cattle ranchers (Colchester, 1991) and 

subsistence farmers (Carr, 2004; 2005) who often convert their land to cattle ranches following a 

few years of row cropping (Sader et al., 1997). The extreme concentration of landholdings and 

underemployment, combined with the country’s very high fertility rate has led to a fragmentation 

of Guatemalan farm plots and rural poverty, thus stimulating rural out-migration to cities, 

international destinations, and the forested frontier (Bilsborrow and Stupp, 1997; Cincotta et al., 

2000; UN, 2003).  

 A vast majority of Guatemala’s current deforestation is occurring within the northern 

frontier regions of the north, in the Department of Petén. This deforestation is mainly undertaken 

by economically and demographically displaced subsistence farmers migrating from 

southeastern and southwestern rural areas of Guatemala who desire to own farmland (Carr, 

2008). However, not every displaced farmer—actually, only a small minority—is ready to travel 

to the uncomfortably hot, humid, and malaria-ridden lowland tropical forests that dominate the 

Petén to practice subsistence agriculture. Interestingly, this minority of migrants spurn more 

economically advantageous rural-urban migration to travel to the frontier, even though urban 

centers are geographically closer to their places of birth than the Petén—in many cases, the 

migrant has to travel to Guatemala City to catch a northward bus to reach the Petén.  

 

2. Methods 

2.1 Data 

 Data used for this analysis come from three sources: (1) 2000 Guatemalan Living 

Standards Measurement Survey, (2) 2003 Guatemala National Agriculture Census, and (3) a 

2001-2009 Forest Cover Change database for all municipalities in Latin America. The three data 

sources provide detailed information regarding land use and management at the municipality and 

department levels. A description of each dataset follows: 

 

2000 Guatemala Living Standards and Measurement Survey 

 This rich source of household and community data covers 20,969 (11,302 rural) 

households and over 100,000 individuals. The surveys were implemented by the Guatemalan 

National Statistics Institute (INE), with technical guidance from the World Bank Living Standard 

Measurement Surveys (LSMS) research team. The nationally representative survey includes 

demographic, economic, and community characteristics modules. For our project, we aggregate 

mean household fertilizer use and tractor ownership to the municipality and department levels 

(Table 1).  

 

2003 Agriculture Census 



 Due to political conflict that ravaged Guatemala during its multi-decade civil war, 

national-level agricultural and land use data had not been gathered since 1979. Therefore, the 

2003 Agricultural Census represents the first large-scale collection of agricultural land use data 

in 24 years. These data were collected by the INE and contains information from 822,188 

farmers—roughly 90% of all producers within the country. Among the many subject areas 

covered by the agricultural census, our project used information gathered on 2003 crop yields for 

four of Guatemala’s main commodities (coffee, sugar, white corn, yellow corn) and fallowed 

land (Table 1). These were also aggregated to the municipality and department levels.  

 

Forest Cover Change 2001-2009 

The dependent variables are woody forest cover and change in woody forest cover.  A 

NSF-funded project produced LUCC estimates for all of Latin America for the years 2001 and 

2009, based on methods developed in Clark et al., (2010) for the Dry Chaco ecoregion of South 

America and expanded to include Latin America using methods in Clark and Aide (2011). Eight 

land cover types were mapped using the MODIS MOD13 Vegetation Indices product (Huete et 

al., 2002), including agriculture, herbaceous vegetation, built-up areas, bare areas, water, 

plantations, woody vegetation (≥80% cover) and mixed woody vegetation (<80% woody cover 

with bare, herbaceous or agriculture). Maps were produced for eastern moist forests and western 

conifer and dry forests separately, with boundaries defined using the majority cover of biomes 

(Olson et al., 2001) within municipalities. Reference data for classifier training and accuracy 

were collected across Central America with visual interpretation of Google Earth high resolution 

imagery within a custom web-based tool (Clark and Aide, accepted with revisions). There were 

2,082 and 1,422 reference samples for the moist and conifer/dry forests, spanning years 2001 to 

2010. We focused our analyses on the more conservative measure of forest in our maps, the 

woody vegetation class, which had 99.8% and 70.6% class producer and 93.6% and 80.3% class 

user accuracy for moist and conifer/dry forests, respectively. The area of woody vegetation was 

summarized for Guatemala’s 331 municipalities and used to calculate our two dependent 

variables: (1) percent woody cover in 2009 and (2) percent change in woody cover from 2001 to 

2009 (i.e. woody cover in 2009/woody cover in 2001). Furthermore, we used the project’s 1990 

and 2000 population census and density information for each of Guatemala’s 331 municipalities 

(Table 1).  

Our independent variables presented in Table 1 were selected based on our prior work in 

Guatemala (Carr, 2008), in Latin America more generally (Carr et al., 2009; Aide and Grau, 

2004), and following the literature on proximate and underlying causes of tropical deforestation 

(Geist and Lambin, 2002). Two sets of variables are tested; demographic and technological-

economic. We recognize additional household, municipal, and departmental level socio-

economic, political and ecological variables as potentially influential as well but we have 

insufficient data richness to pursue all of these potential LUCC drivers. In prior models we tested 

a host of demographic and socio-economic variables that were insignificant in bivariate 

regressions and trimmed from our final models. Under demographic factors, population density 

from 1990-2000 and its squared form are examined to probe potential linear and non-linear 

relations between demographic change in the decade prior to the land cover analysis. Population 

density in 2000 is also examined in relation to LUCC outcomes. The technological-economic 

variables tested are directly related to land use intensity in the cases of household fertilizer and 

tractor use, and subsequent output in the cases of corn production. The converse of 

intensification is also tested as measured by the percentage of land in fallow.  



 



Table 1. Explanatory Variables Used in the Models 

Explanatory Variable Definition Mean Standard 

Deviation 

& 

Population Density 1990 Year 1990 Municipal Population Density in Persons per Square Kilometer 185.91 311.54 329 

Population Density 2000  Year 2000 Municipal Population Density in Persons per Square Kilometer 275.14 483.42 329 

% Population Density ∆ (1990 to 2000) Percentage of Municipal Population Change from 1990 to 2000 1.48 0.32 329 

% Population Density ∆ (1990 to 2000)^2 Percentage of Municipal Population Change from 1990 to 2000 Squared 2.18 0.10 329 

% HHs Using Fertilizer Percentage of Municipal Farming Households that Use Fertilizer in 2000 0.83 0.36 330 

% HHs Owning a Tractor Percentage of Municipal Farming Households that Own a Tractor in 2000 0.038 0.089 300 

Café Production Municipality Café Production in Kilograms per Hectare in 2003 536.95 1243.40 331 

Sugar Production Municipality Sugar Production in Kilograms per Hectare in 2003 2885.79 14192.98 331 

White Corn Production Municipality While Corn Production in Kilograms per Hectare in 2003 85.14 125.09 331 

Yellow Corn Production Municipality Yellow Corn Production in Kilograms per Hectare in 2003 28.39 67.69 331 

% Fallow Land  Percentage of Municipal Farmland in Fallow in 2003 0.21 0.13 330 



2.2 Multi-level Statistical Analysis 

 For this investigation, we employ 2-level random intercept models to separate out 

inherent spatial error in land cover at the municipal level from that found at the 

department level. Instead of assuming that the regression line for land cover change at the 

department level passes through the same intercept, a random intercept formulation 

allows this higher level variable to conform to different regression intercepts to more 

accurately model the outcome of interest and to overcome some issues of spatial 

dependence (Vance and Iovanna, 2006). To estimate the models, the event categories are 

treated as a multivariate response vector using dummy variables with no variation at level 

1, rather level 1 covariance specified at level 2. In addition to analyzing variance across 

nested scales, i.e., the municipality and the department scales, we also explore an 

independent dummy variable in the models to test potential significant differences 

between experimental versus control regions (i.e., 0=experimental 

municipalities/departments, 1=control municipalities/departments). Adequate estimation 

of cross-level interactions and tests of random effects has generally been found by 

simulation studies to require 30 groups with 30 observations, 60 groups with 25 

observations, or 150 groups with 5 observations (Kreft and de Leeuw, 1998). Our sample 

generally meets these criteria (Van der Leeden et al., 1997). The two-level random-

intercept linear regression model is written as follows:  

ijjijpijij xpxy εςβββ +++⋅⋅⋅++= 221  

 For model 1, ijy  is the percentage of land identified by satellite imagery as woody 

vegetation in 2009, where i represents municipalities within j
th

 departments. For model 2, 

ijy  is the percentage change in municipal woody vegetation from year 2001 to 2009 

(natural log transformed to normalize the long-tailed distribution of these data), where i 

represents municipalities within j
th

 departments. 1β is the intercept along with its 

independent error term jς  while 2β  through pβ  are regression coefficients with 

corresponding explanatory variables ijx2  through ijxp  with their independent error 

term ijε . 

 We employ municipalities nested within departments as the two multi-level 

categories and use four specifications of heterogeneity among the groups: ordinary least 

squares (not multilevel), maximum-likelihood estimator, least squares random effects, 

and least squares fixed effects. The distinction between maximum-likelihood and 

generalized least squares is important: the former is more flexible when the underlying 

intercept distribution remains unknown. There are also important differences between 

random and fixed effects models. In the random effects models, each intercept is modeled 

as random deviations from a common mean intercept. Therefore, estimating random 

effects requires many groups, so that the draws from the hypothetical distribution of 

intercepts can identify the parameters. In these circumstances, the estimates are more 

efficient than fixed effects. Another property of the random effects model is the ability to 

estimate explanatory covariates that do not vary over time by group, such as a region’s 

size. The most important factor when using random effects is the relationship between the 

categories/groups and the other explanatory variables. First, the model requires numerous 

covariates; otherwise we have concern that omitted variables are biasing the remaining 

coefficients. Second, group effects need be uncorrelated with the other independent 



variables for appropriate estimation of random effects. In other words, this model 

assumes the observations pertain to the entire population regardless of the group 

characteristics.  

 In fixed effects, we estimate a parameter for each group’s intercept as an average 

deviation from the remaining groups. Because explanatory variables that do not vary 

across time in each unit will be perfectly collinear with the fixed effects we cannot 

estimate their effects. While estimation removes all cross-section variation in the 

dependent and independent variables, the advantage is controlling for unavailable, 

omitted variables. Furthermore, if group effects by department are correlated with the 

covariates, then the fixed effects model is more consistent than the random effects model. 

We ensure that random effects models are not mis-specified compared with the fixed 

effects model by employing a Hausman test.  

 

2.3 Spatial Analysis and Modeling 

GWR is employed to examine spatial distributions of parameter estimates for the 

two models detailed in section 2.1. As commonly available software, with easily 

replicable results, we utilize ArcMap 10.0 for the GWR model. The ArcMap GWR tool 

results in global and local R
2
 values, local parameter estimates, standard errors, and 

standardized residual values.  However, ArcMap GWR does not provide global 

parameter estimates or statistical significance measures. While available from the GWR 

software created by Fotheringham, Charlton, and Brunsdon, the problem of global p-

values for parameter estimates is discussed in the corresponding software white paper 

(Charlton et al., 2005). Additionally, local variation in parameter estimates rather than 

global estimates is of interest to this study for exploring spatial distributions.   

The two dependent variables, woody vegetation in year 2009 and percent change 

in municipal woody vegetation from year 2001 to year 2009, were assessed for global 

clustering using Moran’s I with inverse distance weighting and Euclidean distance 

calculation method. Local cluster was examined using the Getis-Ord Gi* statistic for 

local spatial autocorrelation hot and cold spot analysis (Getis and Ord, 1992). To assess 

spatial stationarity of variables utilized in the multi-level model, two OLS regression 

model predicting the dependent variables were run at the municipality spatial scale. 

Resulting standardized residuals were measured for clustering using Moran’s I (Cliff and 

Ord, 1972).  

 To account for residual spatial non-stationarity in the multi-level model, GWR 

was performed.  GWR is a variation on the basic linear regression model by accounting 

for variations in space throughout the parameter surfaces. The GWR for this study is 

stated as:  

 

 

 

 

 

where βi0  is the intercept at location i with latitude and longitude coordinates, n is the 

number of model independent variables, and βik  is value of βk  at point i (Fotheringham 

et al., 2000). For this section y i is the percentage of land identified by satellite imagery as 

woody vegetation in 2009 in model 1, and the percentage change in municipal woody 

iik

n

k

ikii xy εββ ++= ∑
=1

0



vegetation from year 2001 to 2009 in model 2. kβ  is n regression parameter estimates 

displayed in Table 1 with corresponding explanatory variables kx , with independent error 

term ε  at location i. It is important to note that parameters are estimated with a weighting 

function based on distance, resulting in locations closer to the estimated point having 

more influence on the projected value than locations farther away. Using different 

weighting functions can have some impact on the model, however this impact is often 

small (Brundson et al., 1998). A matrix form parameter estimate equation is shown 

(Cahill and Mulligan, 2007): 

yWXXWXb iTiTik

1)( −=
)

 

where ikb
)

 is the estimate of the location-specific parameter bk, and W i  is a spatial weights 

matrix. ArcGIS 10.0 allows for the user to provide a weights matrix, or creates one for 

the regression model. For this study the weights matrix was used from the adaptive 

(Gaussian) kernel option in the GWR Tool, which allows each point’s spatial context to 

vary by feature density. Therefore, the weighting matrix varies by k. An AIC bandwidth 

was applied for both models (a discussion of appropriate bandwidth and kernel choice 

can be found in Fotheringham et al., (2000)). The ArcGIS GWR tool performs a 

multicollinearity diagnostic before running the model, and variables that are locally 

collinear are thrown out. Therefore, the percentage population density change from 1990 

to 2000 variable was dropped due to high local multicollinearity within the GWR model 

only. 

 

3. Results and Discussion 

3.1 Multi-level/Grouped Models 

 The model results for percent woody cover in 2009 are given in Table 2. The 

number of groups is 22, which is a relatively small amount for determining random 

effects parameters. The number of observations per group varies from 5 to 27, allowing 

sufficient averaging for the fixed effects estimator. As for time-invariant covariates, we 

do not have data available over time with sufficient variation in the independent variables 

to consider estimating invariant factors. Finally, the covariates that are available are 

likely correlated within groups; for example, population density is related to region. 

These aspects point to using fixed effects.   

 

Table 2. Multi-level results for modeling percent woody cover in 2009 with socio-

economic variables. The estimates are from 298 data points grouped by 22 departments.  

 OLS 

(&ot 

Multilevel) 

Maximum 

Likelihood 

Estimator 

Random 

Effects 

Fixed 

Effects 

     

PopDen_2000 -0.000 -0.000 -0.000 -0.000 

 (0.005)** (0.017)* (0.014)* (0.030)* 

PrctChgPopDensity1990-2000 0.565 0.324 0.401 0.185 

 (0.001)** (0.053)+ (0.015)* (0.282) 

PrctChgPopDensity19902000^2 -0.131 -0.077 -0.094 -0.046 

 (0.003)** (0.075)+ (0.030)* (0.293) 

% HHs Using Fertilizer -0.059 -0.058 -0.059 -0.054 

 (0.073)+ (0.072)+ (0.070)+ (0.121) 

% HHS Owning a Tractor -0.404 -0.293 -0.326 -0.242 



 (0.004)** (0.032)* (0.019)* (0.097)+ 

Café Production 0.000 0.000 0.000 0.000 

 (0.000)** (0.000)** (0.000)** (0.000)** 

Sugar Production -0.000 -0.000 -0.000 -0.000 

 (0.008)** (0.025)* (0.019)* (0.058)+ 

White Corn Production -0.000 -0.000 -0.000 -0.000 

 (0.005)** (0.001)** (0.002)** (0.001)** 

Yellow Corn Production 0.000 0.000 0.000 0.000 

 (0.184) (0.166) (0.177) (0.181) 

% Fallow Land -0.565 -0.524 -0.543 -0.479 

 (0.000)** (0.000)** (0.000)** (0.000)** 

R-squared 0.286  0.282 0.236 

Log likelihood  77.51   

Random Intercept Standard Deviation ( jς )  0.08 0.05 0.10 

Residual Standard Deviation ( ijε )  0.18 0.18 0.18 

Interclass Correlation (ρ)  0.16 0.07 0.23 

Likelihood Ratio Test of jς   17.71   

Chi-squared  (0.000)   

F-test of Model Significance    3.27 

Chi-squared    (0.000) 

Hausman Test             24.32 

Chi-squared            (0.002) 

p values in parentheses: + significant at 10%; * significant at 5%; ** significant at 1% 

 

 Multilevel formulations are significantly more descriptive than single-level 

formulations as shown by the highly significant Likelihood Ratio Test for the MLE 

model and F-Test of Model Significance for the fixed effects model. However, the highly 

significant Hausman test suggests the random effects models are mis-specified compared 

with the fixed effects model. Therefore, further discussion of 2009 percent woody cover 

results will pertain to the fixed-effects multilevel model only.  

 Multiple coefficients are significant but exhibit values below 0.00001—below the 

level of practical significance (2000 population density, café production, sugar 

production, and white corn production). Percentage of land in fallow was highly 

significant for the percent woody cover in 2009 model with a coefficient of -0.479, 

meaning for every percentage increase in fallow land at the municipality level, there was 

a 0.48% decline in woody cover in 2009. Percentage of households owning a tractor was 

marginally significant with a coefficient of -0.242, meaning for every percentage increase 

in households that own a tractor at the municipality level, there was 0.24% less woody 

cover in 2009.  

 The models of change in woody cover between 2001 and 2009 are shown in Table 

3. As in the 2009 woody cover model, a multilevel formulation was significantly more 

descriptive than a single-level model. Furthermore, the Hausman Test again indicates 

mis-specified random effects models; therefore, subsequent interpretations of this model 

pertains to the fixed effects multilevel model only. 

 As in the 2009 woody cover model, 2000 population density and café production 

remain significant but below the level of practicality with coefficients below 0.00001. 

Also consistent with the 2009 woody cover findings, percentage of households that own a 

tractor remains significant and negatively correlated with the change in woody cover 

from 2001 to 2009. However, unlike 2009 woody cover, for woody cover change we 



observe a significant and positive relationship between both the percentage of households 

that use fertilizer and percentage of the municipality in fallow. Specifically, every one 

percent rise in the number of households that use fertilizer was correlated with a 0.07% 

increase in woody vegetation between 2001 and 2009. Furthermore, each percent rise in 

fallow land at the municipality level was correlated with a 2.76% increase in woody 

cover between 2001 and 2009. A likely explanation for such a large corresponding 

increase in woody cover with a rise in fallowed land is the “fallow” category captures 

abandoned land that is reverting back to forest as argued under Forest Transition Theory 

(Mather and Needle 1998). 

 

Table 3. Multi-level Results for (natural log) percent change in woody cover from 2001 

to 2009 with socioeconomic variables. Estimates are from 278 data points grouped by 22 

departments.   

 &ot 

Multilevel 

(OLS) 

Maximum 

Likelihood 

Estimator 

Random Effects Fixed 

Effects 

 

      

PopDen_2000 0.001 0.000 0.000 0.000  

 (0.000)** (0.003)** (0.003)** (0.011)*  

PrctChgPopDensity1990-2000 -0.243 0.093 0.086 0.122  

 (0.312) (0.658) (0.688) (0.575)  

% HHs Using Fertilizer 1.226 0.623 0.641 0.536  

 (0.000)** (0.001)** (0.001)** (0.005)**  

% HHS Owning a Tractor -2.399 -2.777 -2.755 -2.890  

 (0.009)** (0.000)** (0.000)** (0.000)**  

Café Production 0.000 0.000 0.000 0.000  

 (0.000)** (0.003)** (0.003)** (0.009)**  

Sugar Production -0.000 -0.000 -0.000 -0.000  

 (0.464) (0.814) (0.820) (0.793)  

White Corn Production 0.003 0.001 0.001 0.001  

 (0.001)** (0.049)* (0.045)* (0.114)  

Yellow Corn Production 0.001 0.001 0.001 0.001  

 (0.308) (0.231) (0.240) (0.257)  

% Fallow Land -0.221 1.134 1.094 1.325  

 (0.757) (0.079)+ (0.096)+ (0.048)*  

R-squared 0.307  0.252 0.158  

Log likelihood  -406.32    

Random Intercept Standard Deviation ( jς )  0.96 0.87 1.07  

Residual Standard Deviation ( ijε )  0.94 0.96 0.96  

Interclass Correlation (ρ)  0.51 0.45 0.56  

Likelihood Ratio Test of jς   86.32    

Chi-squared  (0.000)    

F-test of Model Significance    9.65  

Chi-squared    (0.000)  

Hausman Test        22.25   

Chi-squared         (0.002)   

p values in parentheses: + significant at 10%; * significant at 5%; ** significant at 1% 

 

3.2 Spatial Analysis and Modeling 



Both the global and localized clustering measures indicate significant spatial 

dependence for the two variables of interest. Figure 1 shows percent woody cover in 

2009 and change in woody cover from 2001-2009. Table 4 displays the Moran’s I and Z 

scores for the independent variables, with larger significant Z scores indicating greater 

clustering. Both dependent variables show statistically significant clustering at the 99% 

confidence interval. Percent woody vegetation in year 2009 has more global clustering 

with a Z score of 12.59 as opposed to the change in woody vegetation with a Z score of 

3.78. This may point to less spatial non-stationarity for the change model than the 2009 

model, however it is difficult to draw conclusions about the residuals for an ill-fit model. 

Results from the GWR showed improvement in global adjusted R
2
 values from 0.016 to 

0.024 for the percent change in woody cover from 2001 to 2009 model, and a rise in 

adjusted R
2
 from 0.251 to 0.471 for the percent woody cover in 2009 model.  By 

accounting for spatial non-stationarity, the GWR model outperformed both models, 

although better results were seen for the percent woody cover in 2009 model likely due to 

the higher spatial clustering of OLS residuals that were accounted for by the GWR. 

Standardized residuals from both Model #1 and Model #2 were measured for spatial 

autocorrelation using Moran’s I, and results confirm the lack of clustering (Table 4).  

 

 
Figure 1. Percent woody cover in 2009 (left) and percent change in woody cover from 

2001 to 2009 (right). 

 

Table 4. Moran’s I for Change in Woody Vegetation 2001-2009 

Variable Moran’s I Z Score P Value Autocorrelation 

Change in Woody Vegetation 

2001 – 2009 

.02 3.77 < .0001 Strongly 

Clustered 

Woody Vegetation 2009 .09 12.59 < .0001 Strongly 

Clustered 

OLS Change 2001 – 2009 

Standardized Residuals 

.01 1.78 .07 Clustered 

OLS 2009 Standardized .07 9.42 < .0001 Strongly 



Residuals Clustered 

GWR Change 2001 – 2009 

Standardized Residuals 

.01 1.16 .25 Random 

GWR 2009 Standardized 

Residuals 

.00 .72 .47 Random 

 

A global pattern of woody clustering for 2009 is confirmed when examining local 

clustering using Gi* (Figure 2) hot and cold spot analysis. Hot spots are spatial units of 

high values surrounded by other units of high values (with cold spots the reverse), which 

are statistically significant (measured by Z scores) when compared to a random 

distribution. Percent woody cover in 2009 exhibits three hot spot regions with high forest 

cover for diverse reasons. The northeast portion of the country forms part of the Maya 

Biosphere Reserve and is devoid of roads and settlements; the area in the northwest was 

severely affected by civil war until the late 1990s and experienced some forest regrowth 

as a result of out-migration and farm abandonment. The central hotspot is covered by 

steep volcanoes and has been a priority conservation area by The Nature Conservancy 

during recent years. There is also a significant cold spot in the south-eastern area of the 

country. Change in woody cover from 2001 to 2009 shows one hot spot in the central 

area of the western region of the country, indicating an area that experienced significantly 

clustered high values of change between 2001 and 2009. Change here was rapid in 

association with high indigenous population density and high natural population growth.   

 

 
Figure 2. Getis-Ord Gi* maps for woody vegetation in 2009 and change in woody 

vegetation with significant clusters of high values in red and significant clusters of low 

values in blue. 

 

Figure 3 presents coefficient estimates from the GWR model of percent 

population density change from 1990 to 2000 on the left and percent of land in fallow as 

related to woody cover in 2009 on the right. Population density change has a positive 

impact on percent woody cover in 2009 in the southern parts of Guatemala, but a 

negative impact in the northern parts of Guatemala. This result logically follows those 



prior on intensification. Southern areas where population density increases is likely 

related with urbanization and thus some land abandonment, whereas in the north the 

population is overwhelmingly rural and thus increasing population density here increases 

the number of farm workers and subsistence consumers, leading to less woody cover. 

Percent fallow land has a negative impact on percent of woody cover in 2009 country-

wide, however this effect grows moving east through the country.  Eastward and 

northward the countryside is more rural and practicing semi-subsistence agriculture and 

more forest cover which can be converted to fallow. Conversely, the more densely 

populated and urban areas of the southwest are largely deforested, and so fallow land is 

more likely to be associated with regrowth. 

 

 
Figure 3. GWR coefficient estimates for percent population density change from 1990 to 

2000 (left), and percent of land in fallow (right) for the percent woody cover in 2009 

model. 

 

 We now turn to analyzing the parameter coefficient distributions resulting from 

the GWR regression.  Figure 4 illustrates the parameter estimates for percentage of 

households using fertilizer for both models.  Both the 2009 and 2001-2009 change 

models show similar spatial patterns of coefficient estimates increasing moving 

northward through the country, however in the 2009 model the percent of households 

using fertilizer has an increasingly negative model impact moving north, and in the 2001-

2009 change model the percent of households using fertilizer has an increasingly positive 

impact moving north.  The southern portion of the country is intensively managed in 

export crops such as sugar cane with high fertilizer inputs but low forest cover at the 

initial time period and low change in forest cover during the period. Conversely, moving 

northward, agriculture is generally more small scale, characterized by semi-subsistence 

maize swidden with relatively less inputs of fertilizers. Within this context, the more 

wooded remote northern regions are more likely to have recently cleared forest or 

secondary growth in order to intensify and extensify production simultaneously. 



 
Figure 4. GWR coefficient estimates for percent households using fertilizer for the 

percent woody cover in 2009 model (left) and percent change in woody cover from 2001 

to 2009 model (right).  

 

 Figure 5 displays mapped coefficient estimates for percent of households owning 

a tractor.  Coefficient estimates for the 2001-2009 change model are higher, and follow a 

similar spatial pattern to the percent of households using fertilizer coefficient estimates 

with values increasing to higher negative values northward through the country.  The 

pattern follows the simultaneous extensification and intensification relationship observed 

with fertilizer inputs described above. The percent woody cover in 2009 model provides 

an interesting spatial view of the households owning tractors variable.  Here, coefficient 

estimates have higher negative values both in the north and south-western parts of the 

country.  However, there is a patch of positive coefficient estimates in the central and 

north-western areas demarcated in a green color. In these areas, the little forest that does 

remain may be preciously coveted for fuelwood and intensification with tractors may 

help increase agricultural production and therefore benefit forest preservation through 

intensification. 

 



 
Figure 5. Coefficient estimates for percent households owning tractors for the percent 

woody cover in 2009 model (left) and percent change in woody cover from 2001 to 2009 

model (right). 

 

  Local GWR R
2
 values for the percent woody cover in 2009 and percent change in 

woody cover from 2001 to 2009 are displayed in Figure 6.  In the 2009 model, values 

range from 0 in the western-central area of the country where model variables did not 

predict any woody cover in 2009, to 0.70 in the south-eastern area of the country, where 

it can be concluded that the variables selected for the model were best able to predict 

percent of woody cover in 2009.  Local R
2
 values were equal to 0 in a much larger 

portion of the country in the percent change in woody cover from 2001 to 2009, and 

comparatively good model fit, although the highest it achieved was R
2
 value of 0.15, was 

in the northern part of the country.  The maps in Figure 6 give an understanding of how 

the models are able to perform throughout Guatemala.   

 



 
Figure 5. Local GWR R

2
 values for 2009 woody vegetation (left) and 2001/2009 change 

woody vegetation (right).  

 

4. Conclusion 

 This paper examines GWR versus multi-level models as applied to tropical LUCC 

and considers theoretical and practical implications to the two approaches. Together, 

these models allow us to draw a more complete picture of land cover change patterns in 

Guatemala, and to elaborate more comprehensive implications for theory, empiricism, 

and policy. While the data sources remain the same, each model provides comparative 

advantages, highlighting both possibilities and limitations when determining an 

appropriate statistical approach.  

 OLS regression suggested that agricultural intensification in the form of fertilizers 

and tractors and higher levels of fallowed land are negatively associated with forest cover 

in 2009 while increased population density is positively associated with higher forest 

cover. Examining forest change during the first decade of the 2000s, we observe that 

areas that increasingly rely upon mechanized equipment—which is relatively rare—

and/or fertilizers have more thoroughly captured and put into agricultural production 

available agricultural land—especially white and yellow corn. By taking into account 

spatial heterogeneity at the municipal and department levels, the multilevel model results 

modify our OLS findings to allow the analysis to better comply with the spatial 

independence assumptions of OLS regression. Thus, the fixed effects multilevel model 

results differ OLS by only finding negative relationships between both tractor ownership 

and percent fallowed land with 2009 woody cover. However, multilevel model results for 

change in woody cover from 2001 to 2009 capture a positive trend between percentage of 

land in fallow with woody cover change in addition to previously mentioned OLS 

relationships with tractor ownership and fertilizer use.  

 Multi-level effects and spatial clustering were significant. Results from the two 

approaches corroborated each other synergistically yet also evinced important differences 

among nested versus spatial manifestations of predictor and outcome variables. Our use 

of the hierarchical model separated the effects of municipal versus departmental 



variables, allowing us to distinguish the scale at which variables were most influential. 

The GWR, conversely and additionally, indicated where these associations of changes are 

most salient. The GWR model controlled for spatial autocorrelation in the geographic 

distribution of woody cover and woody cover change across the Guatemalan landscape.  

It indicated that estimated coefficients vary over space, and visually displays where these 

positively influence the outcome in some areas, while negatively influencing the outcome 

in others. A clear trend emerges: The southwest to northeast gradient of decreasing 

population density, higher but decreasing forest cover, and lower but increasing 

technological inputs are particularly illuminated by the GWR. 

 The debate in geography and cognate sciences over the importance of space vs. 

place is often investigated with quantitative or qualitative research, respectively. It need 

not be so. Place can be quantified and measured. Doing so reveals information that is lost 

with the assumption of continuous space in spatial regression analysis (Nelson, 2001). 

Nested or hierarchical effects are often more descriptive of the phenomena of interest. 

Importantly, they are also more policy-applicable. Policy is not formulated or applied in 

continuous space but within a nested structure of political units from neighborhoods, to 

towns, counties, states, and nations. No one model is correct. Rather, appreciating the 

comparative advantages and limitations of each enhances a holistic approach to 

geographical analysis of tropical LUCC and human-environment interactions. 

 Great care should be taken in constructing any model, whether OLS, MLE, 

random, fixed, multi-level, or spatial in order to ensure the most parsimonious and 

sensible final model and interpretation of model coefficients. Future research should 

fruitfully consider spatial versus nested effects and combine both for a more holistic 

measurement and interpretation of complex coupled human-natural systems. 
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